Kirjojen hintavertailu. Mukana 11 238 005 kirjaa ja 12 kauppaa.

Kirjahaku

Etsi kirjoja tekijän nimen, kirjan nimen tai ISBN:n perusteella.

7 kirjaa tekijältä Matilde Marcolli

Lumen Naturae

Lumen Naturae

Matilde Marcolli

MIT Press
2020
sidottu
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos.This is a book about art-and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science-the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe-while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dali, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Leger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.
Arithmetic Noncommutative Geometry

Arithmetic Noncommutative Geometry

Matilde Marcolli

American Mathematical Society
2005
nidottu
Arithmetic non commutative geometry uses ideas and tools from non commutative geometry to address questions in a new way and to reinterpret results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at Archimedean places of arithmetic surfaces and varieties.Non commutative geometry can be expected to say something about topics of arithmetic interest because it provides the right framework for which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry. With a foreword written by Yuri Manin and a brief introduction to non commutative geometry, this book offers a comprehensive account of the cross fertilization between two important areas, non commutative geometry and number theory. It is suitable for graduate students and researchers interested in these areas.
Seiberg-Witten Gauge Theory

Seiberg-Witten Gauge Theory

Matilde Marcolli

HINDUSTAN BOOK AGENCY
2011
pokkari
The newly developed field of Seiberg-Witten gauge theory has become a well-established part of the differential topology of four-manifolds and three-manifolds. This book offers an introduction and an up-to-date review of the state of current research.
Noncommutative Cosmology

Noncommutative Cosmology

Matilde Marcolli

WS Professional
2018
sidottu
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
Noncommutative Cosmology

Noncommutative Cosmology

Matilde Marcolli

WS Professional
2018
nidottu
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
Feynman Motives

Feynman Motives

Matilde Marcolli

World Scientific Publishing Co Pte Ltd
2010
sidottu
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a “bottom-up” approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, “top-down” approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
Feynman Motives

Feynman Motives

Matilde Marcolli

World Scientific Publishing Co Pte Ltd
2010
nidottu
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a “bottom-up” approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, “top-down” approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.