Kirjojen hintavertailu. Mukana 11 244 527 kirjaa ja 12 kauppaa.

Kirjahaku

Etsi kirjoja tekijän nimen, kirjan nimen tai ISBN:n perusteella.

162 tulosta hakusanalla Haruzo Hida

Hilbert Modular Forms and Iwasawa Theory

Hilbert Modular Forms and Iwasawa Theory

Haruzo Hida

Clarendon Press
2006
sidottu
The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, authored by a leading researcher, describes the striking applications that have been found for this technique. In the book, the deformation theoretic techniques of Wiles-Taylor are first generalized to Hilbert modular forms (following Fujiwara's treatment), and some applications found by the author are then discussed. With many exercises and open questions given, this text is ideal for researchers and graduate students entering this research area.
p-Adic Automorphic Forms on Shimura Varieties

p-Adic Automorphic Forms on Shimura Varieties

Haruzo Hida

Springer-Verlag New York Inc.
2004
sidottu
In the early years of the 1980s, while I was visiting the Institute for Ad­ vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon­ ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de­ pending on their weights, and this book is the outgrowth of the lectures given there.
Modular Forms and Galois Cohomology

Modular Forms and Galois Cohomology

Haruzo Hida

Cambridge University Press
2008
pokkari
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor–Wiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the Taylor–Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
Elementary Theory of L-functions and Eisenstein Series

Elementary Theory of L-functions and Eisenstein Series

Haruzo Hida

Cambridge University Press
1993
pokkari
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.
Modular Forms and Galois Cohomology

Modular Forms and Galois Cohomology

Haruzo Hida

Cambridge University Press
2000
sidottu
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor–Wiles proof of Fermat’s last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and recent results on elliptic modular forms, including a substantial simplification of the Taylor–Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
p-Adic Automorphic Forms on Shimura Varieties

p-Adic Automorphic Forms on Shimura Varieties

Haruzo Hida

Springer-Verlag New York Inc.
2011
nidottu
In the early years of the 1980s, while I was visiting the Institute for Ad­ vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon­ ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de­ pending on their weights, and this book is the outgrowth of the lectures given there.
Elliptic Curves and Arithmetic Invariants

Elliptic Curves and Arithmetic Invariants

Haruzo Hida

Springer-Verlag New York Inc.
2013
sidottu
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including µ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Elliptic Curves and Arithmetic Invariants

Elliptic Curves and Arithmetic Invariants

Haruzo Hida

Springer-Verlag New York Inc.
2015
nidottu
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including µ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Geometric Modular Forms And Elliptic Curves

Geometric Modular Forms And Elliptic Curves

Haruzo Hida

World Scientific Publishing Co Pte Ltd
2000
sidottu
This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.
Elementary Modular Iwasawa Theory

Elementary Modular Iwasawa Theory

Haruzo Hida

World Scientific Publishing Co Pte Ltd
2021
sidottu
This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry.Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation.The fundamentals in the first five chapters are as follows:Many open problems are presented to stimulate young researchers pursuing their field of study.
Geometric Modular Forms And Elliptic Curves (2nd Edition)

Geometric Modular Forms And Elliptic Curves (2nd Edition)

Haruzo Hida

World Scientific Publishing Co Pte Ltd
2011
sidottu
This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.In this new second edition, a detailed description of Barsotti-Tate groups (including formal Lie groups) is added to Chapter 1. As an application, a down-to-earth description of formal deformation theory of elliptic curves is incorporated at the end of Chapter 2 (in order to make the proof of regularity of the moduli of elliptic curve more conceptual), and in Chapter 4, though limited to ordinary cases, newly incorporated are Ribet's theorem of full image of modular p-adic Galois representation and its generalization to ‘big’ ?-adic Galois representations under mild assumptions (a new result of the author). Though some of the striking developments described above is out of the scope of this introductory book, the author gives a taste of present day research in the area of Number Theory at the very end of the book (giving a good account of modularity theory of abelian Q-varieties and Q-curves).
Elementary Theory of L-functions and Eisenstein Series

Elementary Theory of L-functions and Eisenstein Series

Hida Haruzo

Cambridge University Press
1993
sidottu
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.
Haruko's World

Haruko's World

Gail Lee Bernstein

Stanford University Press
1983
pokkari
In Japan as in the United States, family farming is on the wane, increasingly rejected by the younger generation in favor of more promising economic pursuits and more sophisticated comforts. Yet for centuries past, the village and the family farm have constituted the world of the vast majority of Japanese women, as of Japanese men. The dramatic economic and demographic developments of the past two decades have orced extensive changes in the lives of Japanese farm women, many of hwom have been left virtually in charge of their family farms. This book is a study of Japanese farm women's lives in the present era: its central figure is 42-year-old Haruko, a complex, vibrant woman who both exemplifies and makes a mockery of the stereotype of Japanese women. Through Haruko we learn the work routine, family relationships, and social life of the women who are the mainstay of Japanese agriculture. Other women from Haruko's village also figure in the story, and the author's observations of them, based largely on a six-month stay with Haruko and her family in 1974-75, are supplemented with data from questionnaires and personal interviews. An epilogue recounts the author's return to Haruko's village in 1982 and describes the changes that have occurred since 1975 in the lives of Haruko's family and other village women. The book is illustrated with photographs.