Kirjojen hintavertailu. Mukana 10 934 324 kirjaa ja 11 kauppaa.
Kansikuva: Wavelet Based Approximation Schemes for Singular Integral Equations

Wavelet Based Approximation Schemes for Singular Integral Equations

Tekijä: Madan Mohan Panja; Birendra Nath Mandal

Info

Kirjan Wavelet Based Approximation Schemes for Singular Integral Equations (2020) on kirjoittanut Madan Mohan Panja. Kirjan kieli on englanti, ja sen on kustantanut CRC Press. Kirja on laajuudeltaan 300 sivua ja se on sidottu.

Kuvaus

Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.

Tuotetiedot

ISBN 9780367199173
Kustantaja CRC Press
Julkaistu 25.9.2020
Formaatti sidottu
Kieli englanti
Sivumäärä 300
Paino 884g
Otsikko Wavelet Based Approximation Schemes for Singular Integral Equations
Tekijä Madan Mohan Panja; Birendra Nath Mandal

Hintavertailu: Wavelet Based Approximation Schemes for Singular Integral Equations

Tarkastamme hinnat 11 eri kirjakaupasta.

Kauppa
Adlibris
Haetaan hintaa...
Booky
Haetaan hintaa...
Kirja.fi
Haetaan hintaa...
Suomalainen
Haetaan hintaa...
Akateeminen Kirjakauppa
Haetaan hintaa...
Kansallinen Kirjakauppa
Haetaan hintaa...
Prisma
Haetaan hintaa...
Rosebud
Haetaan hintaa...
Finlandia Kirja
Haetaan hintaa...
Vinhan kirjakauppa
Haetaan hintaa...
Libristo
Haetaan hintaa...

Hintahälytys

Saat sähköpostin, kun hinta on sama tai alittaa asettamasi hinnan.

Sisältääkö hinta toimituskulut?

Tätä hintavertailleet katsoivat myös näitä

Kansikuva: Tom

Tom

Jonathon Kibler

Kansikuva: Learning more about Health

Learning more about Health

Luciana Cardoso Dos Santos; Suyane Da Silveira Moura; Bruna Layra Silva

Kansikuva: Eugenia

Eugenia

Geórgeos C AwgerinØs